A sensitive electrochemical sensor for rapid and selective determination of codeine in biological samples using carbon paste electrode modified with carbon nanotube and nickel oxide nanoparticles

1.762 776


Abstract. This work reports on the analytical performance of carbon paste electrodes (CPE) modified with multi wall carbon nanotubes (MWCNT) and NiO nanoparticles for the determination of codeine. The morphology of Ni nanoparticles was investigated by scanning electron microscopy (SEM). Cyclic voltammetry and differential pulse voltammetry used for qualitative and quantitative electrochemical evaluation of codeine. Under the suitable conditions, the peak current increased linearly with the concentration of codeine in the range of 0.03 to 12.00 µM, with limits of detection (LOD) and the limits of quantitation (LOQ) 0.015 and 0.05 µM respectively. The proposed electrochemical sensor was successfully applied for quantifying codeine in various real samples includes Urine, Human serum, Codeine tablet.


Sensitive electrochemical sensor, biological, carbon, nickel oxide nanoparticles, codeine

Full Text:



C. Feldman, H.O. Jungk, Angew. Chem. Int. Ed. 40 (2001) 359.

N. Dharmaraj, P. Prabu, S. Nagarajan, C.H. Kim, J.H. Park, H.Y. Kim,” Synthesis of nickel oxide nanoparticles using nickel acetate and poly(vinyl acetate) precursor”, Materials Science and Engineering B 128 (2006) 111–114.

A. Afkhamia,, H. Khoshsafara, H. Bagherib, T.Madrakian,” Facile simultaneous electrochemical determination of codeine andacetaminophen in pharmaceutical samples and biological fluids bygraphene–CoFe2O4nancomposite modified carbon paste electrode”, Sensors and Actuators B 203 (2014) 909–918.

T. Xu, Q. Zhang, J. Zheng, Z. Lv, A. Wang, J. Wei, J. Feng,” Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using Pt nanoparticles supported on reduced graphene oxide”, Electrochimica Acta 115 (2014) 109– 115.

Y. Kim, R. C. Johnson and J. T. Hupp,” Gold Nanoparticle-Based Sensing of “Spectroscopically Silent” Heavy Metal Ions”, Nano Letters, 2001, 1 (4), pp 165–167.

N. F. Atta, A.Galal and S. M. Azab,” Determination of morphine at gold nanoparticles/NaŞon carbon paste modiŞed sensor electrode”, Analyst, 2011, 136, 4682.

A. Somogy, F. Bochner, Z.R. Chen, Lack of effect of paracetamol on the pharmacokinetics and metabolism of codeine in man, European Journal of Clinical Pharmacology 41 (1991) 379–382.

M.L. Kaltenbach, S.S. Mohammed, G. Mullersman, J.H. Perrin, H. Derenford, Pharmacokinetic evaluation of two ibuprofen–codeine combinations, International Journal of Clinical Pharmacology and Therapeutics 32 (1994) 210–214.

Y. Li, K. Li, G. Songa, J. Liua, K. Zhanga, B. Yea,” Electrochemical behavior of codeine and its sensitive determination on graphene-based modified electrode”, Sensors and Actuators B 182 (2013) 401– 407.

B.A. Sproule, U.E. Busto, G. Somer, M.K. Romach, E.M. Sellers, Characteristics of dependent and nondependent regular users of codeine, Journal of Clinical Psychopharmacology 19 (1999) 367–372.

M. Hakkinen, T. Launiainen, E. Vuori, I. Ojanpera, Comparison of fatal poisonings by prescription opioids, Forensic Science International 222 (2012) 327–331.

H. He, S.D. Shay, Y. Caraco, M. Wood, A.J.J. Wood, Simultaneous determination of codeine and it seven metabolites in plasma and urine by high-performance liquid chromatography with ultraviolet and electrochemical detection, Journal of Chromatography B 708 (1998) 185–193.

M. Shamsipur, N. Fattahi, Extraction and determination of opium alkaloids in urine samples using dispersive liquid–liquid microextraction followed by high performance liquid chromatography, Journal of Chromatography B 879 (2011) 2978–2983.

Z. Hu, Q. Zou, J. Tian, L. Sun, Z. Zhang, Simultaneous determination of codeine, ephedrine, guaiphenesin and chlorpheniramine in beagle dog plasma using high performance liquid chromatography coupled with tandem mass spectrometric detection: application to a bioequivalence study, Journal of Chromatography B 879 (2011) 3937–3942.

M. Krogh, A.S. Christophersen, K.E. Rasmussen, Automated sample preparation by on-line dialysis and trace enrichment: analysis of morphine, 6-monoacetylmorphine, codeine, ethylmorphine and pholcodine in plasma and whole blood by capillary gas chromatography and capillary gas chromatography–mass spectrometry, Journal of Chromatography B 621 (1993) 41–48.

R. Meatheral, GC–MS confirmation of codeine, morphine, 6-acetylmorphine, hydrocodone, hydromorphone, oxycodone, and oxymorphone in urine, Journal of Analytical Toxicology 23 (1999) 177–186.

K.A. Rees, P.A. McLaughlin, M.D. Osselton, Validation of a gas chromatography–ion trap- tandem mass spectrometry assay for the simultaneous quantification of cocaine, benzoylecgonine, cocaethylene, morphine, codeine, and 6-acetylmorphine in aqueous solution, blood, and skeletal muscle tissue, Journal of Analytical Toxicology 36 (2012) 1– 11.

U. Hofmann, S. Seefried, E. Schweizer, T. Ebner, G. Mikus, M. Eichelbaum, Highly sensitive gas chromatographic–tandem mass spectrometric method for thedetermination of morphine and codeine in serum and urine in the femtomolar range, Journal of Chromatography B 727 (1999) 81–88.

F.T. Delbeke, M. Debackere, Influence of hydrolysis procedures on the urinary concentrations of codeine and morphine in relation to doping analysis, Journal of Pharmaceutical and Biomedical Analysis 11 (1993) 339.

M.R. Gomez, L. Sombra, R.A. Olsina, L.D. Martínez, M.F. Silva, Development and validation of a capillary electrophoresis method for the determination of codeine, diphenhydramine, ephedrine and noscapine in of by pharmaceuticals, ILFARMACO 60 (2005) 85.

R. Gottardo, A. Fanigliulo, F. Bortolotti, G. De Paoli, J.P. Pascali, F. Tagliaro, Hair analysis for illicit drugs by using capillary zone electrophoresis-electrospray ionization-ion trap mass spectrometry, Journal of Chromatography A 1159 (2007) 185.

L. Zhang, R. Wang, Y.Q. Yu, Y.R. Zhang, Capillary electrophoresis with laser-induced fluorescence and pre-column derivatization for the analysis of illicit drugs, Journal of Chromatography B 857 (2007) 130.

I. Baranowska, P. Markowski, A. Gerle, J. Baranowski, Determination of selected drugs in human urine by differential pulse voltammetry technique, Bioelectrochemistry 73 (2008) 5.

N.A. El-Maali, Voltammetric analysis of drugs, Bioelectrochemistry 64 (2004) 99.

A. A. Ensafi, N. Ahmadi, B. Rezaei, M. M. Abarghoui,” A new electrochemical sensor for the simultaneous determination of acetaminophen and codeine based on porous silicon/palladium nanostructure”, Volume 134, 1 March 2015, 745–753.

P. F. Pereira, M. C. Marra, R. R. Cunha, W. P. da Silva, R. A. A. Munoz, E. M. Richter,” Two simple and fast electrochemical methods for simultaneous determination of promethazine and codeine”, Volume 713, 15 January 2014, 32–38.

Ghica, M.E., Pauliukaite, R., Fatibello-Filho, O., Brett, C.M.A., 2009.Sensors and Actuators B 142, 308–315.

L. Chen, J. Chen, H. Zhou, D. Zhang, H. Wan, Synthesis of dodecanethiol monolayer- stabilized nickel nanoparticles, Materials scince and Engineering A 452-453, (2007) 262- 266.

International Atomic Energy Agency (IAEA), 1985. ”Report on the Second Research Co- Ordination Meeting of IAEA”, Neuherberg, Germany.

P.T. Kissinger, W.R. Heinemann, Laboratory Techniques in Electroanalytical Chemistry, 2nd ed., Taylor & Francis, New York, 1996.

L. ˇSvorc, J. Sochr, J. Svítková, M. Rievaj, D. Bustin,” Rapid and sensitive electrochemical determination of codeine in pharmaceutical formulations and human urine using a boron- doped diamond film electrode”, Electrochimica Acta 87 (2013) 503– 510.

A. Afkhami, H. Khoshsafar, H. Bagheri, T. Madrakian,” Facile simultaneous electrochemical determination of codeine and acetaminophen in pharmaceutical samples and biological fluids by graphene–CoFe2O4 nancomposite modiŞed carbon paste electrode”, Sensors and Actuators B 203 (2014) 909–918.