Few-Layer Graphene Grown by Annealing of Sputtered Amorphous Carbon and Its Application in Touch Screens

1.730 450


The application of graphene films as transparent conductive electrodes has shown promising results recently. In this paper, we report a simple, scalable, and economic method for preparation of graphene using annealing of amorphous carbon film deposited on Co/quartz substrate and successive transfer onto quartz substrates toward transparent conductive film application. In this regard electron-beam technique is used for deposition of Co thin film on quartz as a synthetic catalyst and an amorphous carbon film is deposited by sputtering technique. Also, we demonstrate the application of transferred graphene on quartz substrate as bottom plate in the fabrication of 4-resistive touch screen. The transferred graphene films on quartz substrate show sheet resistance of 2 kΩ/sq, with 80% optical transparency in visible wavelength range. The resolution of touch screen was 0.75cm.


Few-layer graphene, annealing, amorphous carbon, sputtering, touch screen

Full Text:



Pepper, Jr W. Touch panel system and Method.United states Patent US4353552. 1982.

Aguilar RN, Meijer GCM. Low-cost System to determinate the X-Y position in a Resistive Touch- Screen. Sensor Technology. 2001. doi: 10.1007/978-94-010-0840-2_12.

Cok RS, Bourdelais RP, Kaminsky CJ. Flexible resistive touch screen.United States Patent US 7081888 B2. 2006.

Aguilar RN, Meijer GCM. Fast interface electronics for a resistive touch-screen. Sensors. 2002. Proceedings of IEEE. 2002. p. 1360-1363.

Philipp H. Capacitive sensor and array. United States Patent US 6452514 B. 2002.

Kent J, Ravid A. Projective Capacitive Touch Screen. United States Patant US 6297811B1. 2001.

Bhalla MR, Bhalla AV. Comporatative Stady of Various Touchscreen Techno logies” International Journal of Computer Applications. 2010;6:12-18.

Eaufderheide BE, Frank P D. Touch Screen System. United States Patent US 6555235 B1. 2003.

Rapakklo H. Touch Screen Controller. European patent application EP 2204726 A1. 2008.

Chopra KL, Major S, Pandya DK. Transparent conductors A status review. Thin Solid Films. 1983;102(1):1-96.

Minami T. Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 2005;20. doi:10.1088/0268-1242/20/4/004

Edwards PP, Porch A, Jones MO, Morgan DV, Perks RM. Basic materials physics of transparent conducting oxides. Dalton Trans. 2004;(19):2995-3002. doi: 10.1039/B408864F

Katsnelson MI. Graphene: Carbon in two dimensions. Mater.Today. 2007;10: 20–27.

Geim AK, Novoselov KS. The Rise of Graphene.Nature Mater.2007;6:183- 191.

Neto AHC, Guinea F, Peres NMR, Novoselov KS, Geim K. The ElectronicProperties ofGraphene. Rev. Mod. Phys. 2009;81:109-162.

Zhang Y, Tan YW, Stormer HL, Kim P. Experimental Observation of the Quantum Hall Effect and Berry's Phase in Graphene. Nature. 2005;438:201-204.

Wu Y, Lin YM, Bol AA, Jenkins KA, Xia F, Farmer DB, Zhu Y, Avouris p. High- frequency, scaled graphene transistors on diamond-like carbon. Journal of Nature. 2011;472:74-78.

Bonaccorso F, Sun Z, Hasan T, Ferrari AC. Graphene photonics and optoelectronics. Nature Photon. 2010;4:611-622.

Wu J, Becerril HA., Bao ZN, Liu ZF, Chen YS, Peumans P. Organic solar cells with solution processed graphene transparent electrodes. Appl. Phys. Lett. 2008;92:263302-1–263302-3.

Kedzierski j, Hsu P, Healey P, Wyatt PW, Keast CL, Sprinkle M, Berger C, Heer A. Epitaxial graphene transistors on SiC substrates. IEEE Trans. Electron Devices. 2008;55: 2078–2085.

Juang ZY, Wu CY, Lo CW, Chen WY, Huang CF, Hwang JC, Chen FR, Leou KC, Tsai CH. Syntehsis of graphene on silicon carbide substrates at low temperature.Carbon.2009.47; 2026-2031.

Gilje S, Han S, Wang M, Wang KL, Kaner RB. A chemical route to graphene for device applications. Nano Lett. 2007;7(11):3394–3398.

Park S, Rouoff RS. Chemical methods for the production of graphene. Nature Nanotechnology. 2009;4:217-224.

Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009;9(1):30- 35.

Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim YJ, Kim S, Ozyilmaz B, Ahn JH, Hong BH, Iijima S. Roll-to-roll production of 30- inchgraphene films for transparent electrodes. Nature Nanotechnol.2010;5: 574–578.

Orofeo CM, Ago H, Hu B,Tsuji M. Synthesis of Large Area, Homogeneous, Single Layer Graphene Films by Annealing Amorphous Carbon on Co and Ni. Nano Res. 2011;4(6):531– 540.

Hofrichter J. Szafranek BN, Otto M, Echtermeyer TJ, Baus M, Majerus A, Geringer V, Ramsteiner M, Kurz H, (2010). Synthesis of graphene on silicon dioxide by a solid carbon source. Nano Lett.2010;10(1):36-42.

Li X, Cai W, Colombo L, Ruoff RS. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 2009;9(12):4268–4272.

Yu QK, Lian J, Siriponglert S, Li H, Chen YP, Pei S. Graphene segregated on Ni surfaces and transferred to insulators. Journal of Appl. Phys. Lett. 2008;93:113103-3.

Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science. 2009;324(5932): 1312-1314.