Gamow-Teller Strength Distributions for Some Magic Nuclei

Necla ÇAKMAK
1.615 740

Abstract


The total Gamow-Teller strengths and their energy distributions for 96Zr, 96Sr, 54Ca, 28O, 24C and 14C have been obtained within the framework of Random Phase Approximation (RPA). The effective interaction potential has been described by considering the commutativity of the Gamow-Teller operator with the central part of the nuclear Hamiltonian. 


Keywords


decay, Shell model, Magic nuclei

Full Text:

PDF


References


W.P. Alford and B.M. Spicer, Advances in Nuclear Physics Vol. 24 (Plenum, New York, 1998)

R. Doering et al., Phys. Rev. Lett. 35, 1961 (1975)

Y. Yoshida et al., Nucl. Phys. A 187, 161 (1972)

D.E. Bainumet et al., Phys. Rev. Lett. 44, 1751 (1980) [5]

B.F. Landers et al., Phys. Rev. C 40, 1985 (1989) [6]

H. Sakai, Nucl. Phys. A 690, 66c (2001) [7]

J. Janecke et al., Nucl. Phys. A 526, 1 (1991) [8]

H. Akimune et al., Nucl. Phys. A 569, 245c (1994) [9]

H. Akimune et al., Phys. Rev. C 52, 604 (1995) [10]

R.G.T. Zegers et al., Nucl. Phys. A 731, 121 (2004) [11]

V.A. Kuzmin and V.G. Soloviev, J. Phys. G 10, 1507 (1984) [12]

C. Gaarde and T.Kammuri, Nucl. Phys. A 215, 314 (1973) [13]

N. Anantaraman et al., Phys. Rev. Lett. 57, 2375 (1986) [14]

H. Wirth et al., Phys. Rev. C 41, 2698 (1990) [15]

H. Laurent et al., Nucl. Phys. A 569, 297c (1994) [16]

M. Moosburger et al., Phys. Rev. C 57, 602 (1998) [17]

C. Gaarde et al., Nucl. Phys. A 369, 258 (1981) [18]

T. Wakasa et al., Phys. Rev. C 55, 2909 (1997) [19]

K. Yako et al., Phys. Lett. B 615, 193 (2005) [20]

V.A. Kuzmin and V.G. Soloviev, J. Phys. G 10, 1507 (1984) [21]

G. Colo et al., Phys. Rev. C 50, 1496 (1994) [22]

N.D. Dang et al., Phys. Rev. Lett. 79, 1638 (1997); Nucl. Phys. A 621, 719 (1997) [23]

E.A. Moukhai, V.A. Rodin and M.H. Urin, Phys. Lett. B 447, 8 (1999) [24]

T. Suzuki and H. Sagawa, Eur. Phys. J. A 9, 49 (2000) [25]

V.A. Rodin and M.H. Urin, Nucl. Phys. A 687, 276c (2001) [26]

N.D. Dang, T. Suzuki and A. Arima, Phys. Rev. C 64, 027303-1 (2001) [27]

N. Paar et al., Phys. Rev. C 69, 054303 (2004) [28]

Z.Y. Ma, B.Q. Chen, N. Van Giai, and T. Suzuki, Eur. Phys. J. A 20, 429 (2004) [29]

T. Babacan, D.I. Salamov, and A. Kucukbursa, Phys. Rev. C 71, 037303 (2005) [30]

T. Babacan, D.I. Salamov, and A. Kucukbursa, et al., Math. Comp. Appl. 10,3 (2005) [31]

H. Liang, N. Van Giai, and J. Meng, Phys. Rev. Lett. C 101, 122502 (2008) [32]

I.N. Boboshin et al. New Magic Nuclei , , , , , and Other Exixtence

Conditions, URL:http://www.kinr.kiev.ua/NPAE Kyiv2008/Boboshin 25-31.pdf [33]

N.I. Pyatov, D.I. Salamov, Nucleonica 22, 127 (1977) [34]

F.A. Gareev et al.,Sov. J. Nucl. Phys. 33, 337 (1981) [35]

A.A. Kuliev et al., Int. J. Mod. Phys. E 9, 249 (2000)

N.I. Pyatov et al., Sov. J. Nucl. Phys. 29, 1 (1979) [37]

N.I. Pyatov, M.I. Baznat, and D.I. Salamov, Sov. J. Nucl. Phys. 29, 121 (1980)

N.I. Pyatov, D.I. Salamov, and S.A. Fayans, Sov. J. Nucl. Phys. 34(3), 335 (1981)

T. Babacan et al., J. Nucl. Phys. G 30, 759 (2004)

V.G. Soloviev, Theory of Complex Nuclei, (Pergamon, New York, 1976)