HİPERYÜZEYLERDE OPTİMİZASYON ÜZERİNE

NECMETTIN TANRIOVER
1.759 452

Abstract


In this work, we …rst de…ne the Hessian form of a hypersurface,then we relate it to the Second Fundamental form of the hypersurface.In the remaining part of this work, we use these formulas to show, howto evaluate the local and restricted extreme values of the hypersurfaceaccording to a given hyperplane

Keywords


Hypersurface, gradient, covariant derivative, Hessianform, second fundamental form, extremum

Full Text:

PDF (Türkçe)


DOI: http://dx.doi.org/10.17776/csj.47068

References


Jonh A. Thorpe. Elementary Topics in Di¤erential Geometry. Springer- Verlag, New York. 1979. pp. 95-100

Stephen Nash, Ariela Sofer, Linear and Nonlinear Programming. The McGraw-Hill Companies Inc., New York, 1996. pp: 338-650

Mokhtrar S. Bazaran, C.M. Shetty. Nonlinear Programming Theory and Algorithms. John Wiley & Sons, New York, 1979. pp:252

Jafolich C. Arya, Robin W. Lardner. Mathematical Analysis, Prentice Hall, Inc. New York 1993 pp :768

Boothby M. William. An Introduction to Di¤erentiable Manifolds and Riemannian Geometry Academic Press. New York, 1995. pp:363-369

Kobayashi S. , Nomizu K. Foundations of Di¤erential Geometry. vol:2. Interscience Publishers, New York, 1967. pp:40-46

A. A. Groenwold. Positive de…nite separable quadratic programs for non-convex problems, Structural Multidisciplinary Optimization, (2012) 46:795–802, DOI 10.1007/s00158-012-0810-8

Zh. B. Zhu, J. B. Jian. An Improved Feasible QP-free Algorithm for Inequality Constrained Optimization, Acta Mathematica Sinica, English Series, Dec., 2012, Vol. 28, No. 12, pp. 2475–2488, DOI: 10.1007/s10114- 012-0561-x

M. Petrache, Meaning of the Hessian of a function in a critical point, February 1, 2012, http://www.math.ethz.ch/~petrache/hessian.pdf