Esnek Hesaplamada Sinirsel Bulanık Sinerjiyi Temel Alan Sistemler ve Yaklaşımlar Üzerine Bir İnceleme

Koray Aki, Bahadır Karasulu
2.738 1.030

Abstract


Hybridization of artificial neural network (ANN) and fuzzy logic (FL) has drawn the attention of researchers in various studies of scientific and engineering field due to the requirements of adaptive intelligent system for solving of real-world problems. Genetic algorithm (GA) has been frequently used to optimize the problem solutions. ANN imitate the work principles of human brain, and realize the learning via using the samples in training process. FL converts the linguistic expressions to rules in a rule base via using given rules and membership functions. When ANN works in conjunction with FL to fill lacks, high performance systems are obtained. The learning ability can be added to FL-based systems via ANN usage. In neuro-fuzzy systems (NFSs), the ability of flexibility, speed and adaptivity can be fused to FL component through ANN component. In our study, 51 studies in the literature about NFSs are systematically reviewed. These studies are based on the hybridization of ANN and FL components. As can be seen from the survey, the approaches based on the adaptive neural fuzzy inference system (ANFIS) are much more used than other neuro-fuzzy systems’studies in the literature. We made a conclusion over example works in the literature.

Keywords


Artificial neural network, Fuzzy logic, Soft computing, Anfis, Hybrid intelligent systems

Full Text:

PDF (Türkçe)


References


Elmas, Ç., 2007. Yapay Zekâ Uygulamaları, Seçkin Yayıncılık, Ankara.

Tektaş, M., Akbaş, A., Topuz V., 2002. Yapay Zekâ Tekniklerinin Trafik Kontrolünde Kullanılması Üzerine Bir İnceleme, 1. Uluslararası Trafik ve Yol Güvenliği Kongresi, Gazi Üniversitesi, Ankara, 551-559.

Nabiyev, V. V., 2010. Yapay Zeka İnsan – Bilgisayar Etkileşimi, Seçkin Yayıncılık, Ankara.

Negnevitsky, M., 2005. Artificial Intelligence: A Guide to Intelligent Systems, Addison Wesley, Harlow, İngiltere.

Ardıl, E., 2009. Esnek Hesaplama Yaklaşımı ile Hata Kestirimi, Doktora Tezi, Trakya Ü. Fen Bilimleri Enstitüsü, Edirne.

Ham, F. M., Kostanic, I., 2000. Principles of Neurocomputing for Science and Engineering, Mc Graw Hill Co., U.S.A..

Üstüntaş, T., Müftüoğlu, O., Şen, Z., 2006. Dijital Fotogrametride Yapısal Görüntü Eşleştirme, İTÜ Dergisi., 5(1), 75-82.

Karlik, B., Karan, O., Okatan, A., 2005. OMX-GR Alıcısı Ve Yapay Sinir Ağı Kullanılarak Koku Algılama Sisteminin Gerçek Zamanlı İncelenmesi, Signal Processing and Communications Applications Conference, Kayseri, Türkiye, 676 – 679.

Öztemel, E., 2003. Yapay Sinir Ağları, Papatya Yayıncılık, İstanbul.

Haykin, S., 2009. Neural Networks and Learning Machines (Third Edition), Pearson Prentice Hall, New Jersey. FINEST Çalışma Adeti: 1 Yüzde Oranı: %2 Yıl Aralığı: 1999 FUN Çalışma Adeti: 5 Yüzde Oranı: %9,8 Yıl Aralığı: 2000-2007 FALCON GARIC NEFCON FINEST FUN SONFIN FNN EFuNN ANFIS