First-principles study of structural, elastic and electronic properties of NdTe2 and TlNdTe2

Yeşim Moğulkoç, Y O Çiftçi, M Kabak, K Çolakoğlu
2.914 1.258

Abstract


The first-principles calculations of structural, elastic and electronic properties of NdTe2 (C38) and TlNdTe2 (L21) compounds  are  investigated  using  the  methods  of  density  functional theory  within the  generalized  gradient approximation (GGA) based on exchange-correlation energy optimization. We have calculated the lattice constants, bulk modulus and its pressure derivative agrees with the available experimental data. We have investigated the elastic properties  to  obtain  further  information.  Second-order  elastic  constants,  Zener  anisotropy  factor,  Poisson’s  ratio, Young’s  modulus,  isotropic  shear  modulus,  B/G  ratios  and  Kleinman  parameter  are  calculated  in  this  study. Electronic  band  structures  are  investigated  using  the  total  and  partial  density  of  states,  charge  distribution  and electronic localization function.


Keywords


ab initio calculation; elasticity; electronic structure; electronic density of states

Full Text:

PDF


References


C.G. Duan, R.F. Sabirianov, W.N. Mei, P.A. Dowben, S.S. Jaswal, E.Y. Tsymbal. Electronic, magnetic and transport properties of rare-earth monopnictides. J. Phys. Condens. Matter., 2007, 19: 315220.

S. Lebegue, S. Svane, M. Katsnelson, I. Lichenstein, O. Eriksson. Multiplet effects in the electronic structure of light rare-earth metals. Physical Rev. B, 2006, 74: 045114.

G. Pagare, P.S. Sanyal, P.K. Jha. High-pressure behaviour and elastic properties of heavy rare-earth Gd monopnictides. Journal of Alloys and Compounds, 2005, 398: 16

C.J.M. Rooymans. Structural Investigations on Some Oxides and Other Chalcogenides at Normal and Very High Pressures (Philips Research Reports), Philips, Eindhoven, 1968.

A. Chatterjee, A.K. Singh, A. Jayaraman. Pressure-Induced Electronic Collapse and Structural Changes in Rare-Earth Monochalcogenides, Phys. Rev. B, 1972, 6: 2285.

A. Jayaraman, A.K. Singh, A. Chatterjee, S. Usha Devi. Pressure-volume relationship and pressure-induced electronic and structural transformations in Eu and Yb monochalcogenides. Phys. Rev. B, 1974, 9: 2513.

V.V. Shchennikov, N.N. Stepanov, I.A. Smirnov, A.V. Golubkov. Thermoelectric power and resistivity of samarium monochalcogenides at ultrahigh pressure. Sov. Phys.Solid State, 1988, 30: 1785.

U. Benedict, W.B. Holzapfel, in: K.A. Gschneidner, L. Eyring, G.H. Lander, G.R. Choppin (Eds.). Handbook on the Physics and Chemistry of Rare Earths, NorthHolland, Amsterdam, 1993.

V.A. Sidorov, N.N. Stepanov, L.G. Khvostantsev, O.B. Tsiok, A.V. Golubkov, V.S. Oskotski, I.A. Smirnov. Intermediate valency state of samarium chalcogenides under high pressure. Semicond. Sci. Technol., 1989, 4: 286.

O.B. Tsiok, V.A. Sidorov, V.V. Bredikhin, L.G. Khvostantsev. Compressibility and electronic transport properties of SmSe and SmTe at the pressure induced valence transition. Solid State Commun., 1991, 79: 227.

T. Le. Bihan, S. Darracq, S. Heathman, U. Benedict, K. Mattenberger, O. Vogt. Phase transformation of the monochalcogenides SmX (X : S, Se, Te) under high pressure. J. Alloy. Compd., 1995, 226: 143.

J.M. Leger, R. Epain, J. Loriers, D. Ravot, J. Rossat-Mignod. Anomalous behavior of CeTe under high pressures. Phys. Rev. B, 1983, 28: 7125.

J.M. Leger, D. Ravot, J. Rossat-Mignod. Volume behaviour of CeSb and LaSb up to 25 GPa. J. Phys. C Solid State Phys., 1984, 17: 4935.

N. Mori, Y. Okayama, H. Takahashi, Y. Haga, T. Suzuki. Neutron scattering investigations of magnetic ordering and crystal field excitations in CeAs under high pressure. Physica B, 1993, 444: 186-188.

U. Benedict. Comparative aspects of the high-pressure behaviour of lanthanide and actinide compounds. J. Alloy. Compd., 1995, 223: 216-225.

I. Shirotani, K. Yamanashi, J. Hayashi, Y. Tanaka, N. Ishimatsu, O. Shimomura, T. Kikegawa. Phase transitions of LnAs (Ln = Pr, Nd, Sm, Gd, Dy and Ho) with NaCltype structure at high pressures. J. Phys. Condens. Matter, 2001, 13: 1939.

I. Shirotani, K. Yamanashi, J. Hayashi, N. Ishimatsu, O. Shimomura, T. Kikegawa. Pressure-induced phase transitions of lanthanide monoarsenides LaAs and LuAs with a NaCl-type structure. Solid State Commun., 2003, 127: 573.

A. Svane, G. Santi, Z. Szotek, W.M. Temmerman, P. Strange, M. Horne, G. Vaitheeswaran, V. Kanchana, L. Petit, H. Winter. Electronic structure of Sm and Eu chalcogenides. Phys. Status Solidi B, 2004, 241: 3185.

D. Singh, M. Rajagopalan, A.K. Bandyopadhyay. Band structure calculation and structural stability of high pressure phases of EuSe. Solid State Commun., 1999, 112:

D. Singh, M. Rajagopalan, M. Husain, A.K. Bandyopadhyay. High pressure band structures and structural stability of EuS. Solid State Commun., 2000, 115: 323.

D. Singh, V. Srivastava, M. Rajagopalan, M. Husain, A.K. Bandyopadhyay. Highpressure band structure and structural stability of EuTe. Phys. Rev. B, 2001, 64: 115110. P. Larson, Walter R. L. Lambrecht. Electronic structure of rare-earth nitrides using the LSDA+U approach: Importance of allowing 4f orbitals to break the cubic crystal symmetry. Phys. Rev. B, 2007, 75: 045114.

C.G. Duan, R. F. Sabiryanov, Jianjun Liu, W. N. Mei, P. A. Dowben and J. R. Hardy. Strain Induced Half-Metal to Semiconductor Transition in GdN. Phys. Rev. Lett., 2005, 94: 237201.

V.N. Antonov, B.N. Harmon, A.N. Yaresko. Electronic structure of mixed-valence semiconductors in the LSDA+U Sm monochalcogenides approximation. Phys. Rev. B, 2002, 66: 165208.

G. Vaitheeswaran, V. Kanchana, M. Rajagopalan. Theoretical study of LaP and LaAs at high pressures. J. Alloy. Compd., 2002, 336: 46.

P. Pandit, V. Srivastava, M. Rajagopalan, S.P. Sanyal. Pressure-induced electronic and structural phase transformation properties in half-metallic PmN: A first-principles approach. Physica B, 2008, 403: 4333.

Y. Wenlong, Y. Shihong, Y. Dunbo, L. Kuoshe, L. Hongwei, L. Yang, Y. Hongchuan. Influence of gadolinium on microstructure and magnetic properties of sintered NdGdFeB magnets. Journal of Rare Earths, 2012, 30: 133-136.

Cristiano C. Bastos, Ricardo O. Freire, Gerd B. Rocha, Alfredo M. Simas. Sparkle model for AM1 calculation of neodymium(III) coordination compounds. J. Photochemistry and Photobiology A: Chemistry, 2006, 177: 225–237.

Th. Böker, R. Severin, A. Müller, C. Janowitz, R. Manzke. Band structure of MoS 2 , MoSe 2 , and α-MoTe 2 : Angle-resolved photoelectron spectroscopy and ab initio calculations. Phys. Rev. B, 2001, 64: 235305.

Y. Mogulkoc, Y.O. Ciftci, K. Colakoglu. Structural, elastic, electronic and thermodynamic properties of Nd 2 Te via first principle calculations. J. Optoelectron. Adv. Mater., 2011, 13: 946-95.

Klaus Stöwe. Crystal structure, magnetic properties and band gap measurements of NdTe 2-x (x=0.11(1)). Zeitschrift für Kristallographie, 2001, 216: 0044-2968.

E.M. Godzhaev, K.D. Orudzhev, V.A. Mamedov and F.S. Mirzoeva. TlNdSe 2 – TlInSe 2 and TlInTe 2 –TlNdTe 2 Systems. Izv. Akad. Nauk SSSR, Neorg. Mater., 1981, 17: 1388–1391.

P. Hohenberg, W. Kohn. Inhomogeneous Electron Gas. Phys. Rev., 1964, 136: 864. W. Kohn, L.J. Sham. Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev., 1965, 140: 1133.

A.D. Becke, K.E. Edgecombe. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys., 1990, 92: 5397.

G. Kresse, J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54: 11169.

G. Kresse, J. Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Compt. Mater. Sci., 1996, 6:

P.E. Blöchl. Projector augmented-wave method. Phys. Rev. B, 1994, 50: 17953.

G. Kresse, J. Joubert. From ultrasoft pseudopotentials to the projector augmentedwave method. Phys. Rev. B, 1999, 59: 1758.

J. Perdew, K. Burke, M. Ernzerhof. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett., 1996, 77: 3865.

F.D. Murnaghan. The Compressibility of Media under Extreme Pressures. Proc. Natl. Acad. Sci. USA, 1944, 30: 5390.

J. Mehl. Pressure dependence of the elastic moduli in aluminum-rich Al-Li compounds. Phys. Rev. B, 1993, 47: 2493.

O.H. Nielsen, R.M. Martin. First-Principles Calculation of Stress. Phys. Rev. Lett., 1983, 50: 697.

Y. Le Page, P. Saxe. Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stres. Phys. Rev. B, 2002, 65: 104104.

S.Q. Wang, H.Q. Ye. First-principles study on elastic properties and phase stability of III–V compounds. Phys. Status Solidi B, 2003, 240: 45.

M. Born and K. Huang. Dynamical Theory of Crystal Lattices, Clarendon, Oxford, 195 B. Mayer, H. Anton, E. Bott, M. Methfessel, J. Sticht, and P.C. Schmidt. Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases. Intermetallics, 2003, 11: 23.

W.A. Harrison, Electronic Structure and Properties of Solids, New York: Dover, 198 L. De Santis and R. Resta. Electron localization at metal surfaces. Surf. Sci., 2000, 450: 126.

G. Kresse, J. Hafner. Ab initio molecular dynamics for liquid metals. Phys. Rev. B, 1993, 47: 558–561.

G. Kresse and J. Furthmüller. Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54:11169.

R.F.W. Bader, S. Johnson, T.H. Tang, P.L.A. Popelier. The Electron Pair. J. Phys. Chem., 1996, 100: 15398-15415.

A. Kirfel, T. Lippmann, P. Blaha, K. Schwarz, D.F. Cox, K.M. Rosso, G.V. Gibbs. Electron density distribution and bond critical point properties for forsterite, Mg(2)SiO(4), determined with synchrotron single crystal X-ray diffraction data. Phys. Chem. Min., 2005, 32: 301-313.

G.V. Gibbs, D.F. Cox, N.L. Ross, T.D. Crawford, J.B. Burt, K.M. Rosso. Experimental and theoretical bond critical point properties for model electron density distributions for earth materials. Phys. Chem. Min., 2005, 32: 208-221.