ON A SPECIAL FORM OF (V) HV-TORSION TENSOR P_{ijk} IN FINSLER SPACES

H. WOSOUGHI

Department of Mathematics Islamic Azad University, Babol Branch, Iran.

Received: 22.03.2015; Accepted: 29.05.2015

Abstract. In this present work, a special form of (v) hv-torsion tensor introduced which may be considered as a generalization of the P - Finsler space and P-reducible Finsler space and then some properties of this space are studied.

2000 Mathematics Subject Classification: 53C60, 53C25

Keywords: P-reducible Finsler space, semi C-reducible Finsler space, Landsberg space, weakly Landsberg space

INTRODUCTION

Let $F^n (n \geq 3)$ be an n-dimensional Finsler space with metric function $L(x, y)$. There are five kinds of torsion tensors in the theory of Finsler space based on Cartan’s connection, out of which

$$P_{ijk} = y^h P_{hijk} \quad \text{and} \quad C_{ijk} = \frac{1}{4} \frac{\partial^3 L}{\partial y^i \partial y^j \partial y^k}$$

as (v)hv-torsion tensor and (h)hv-torsion tensor are of great importance tensors for the present study, where P_{hijk} is as hv-curvature tensor. In Finsler geometry based on Cartan’s connection, there are three kinds of Covariant differentiations, out of which two of them are h-covarient differentiation denoted as $|_{i}$ and V-covarient differentiation denoted as \tilde{i}.

Various interesting forms of these tensors have been studied by many geometers ([1],[3],[4],[8],…). Two of them are a C-reducible Finsler space and a semi C-reducible Finsler space([6],[7]) in which the torsion tensor C_{ijk} respectively is of the forms

$$C_{ijk} = \frac{1}{n+1} (C_i h_{jk} + C_j h_{ik} + C_k h_{ij}) ,$$

$$C_{ijk} = \frac{p}{n+1} (h_{ij} C_k + h_{ik} C_j + h_{jk} C_i) + \frac{q}{C^2} C_i C_j C_k$$

where h_{ij} is the angular metric tensor and $C_i = C_{ik} g^{jk}$, where g^{jk} is reciprocal of the metric tensor g_{jk}, and p and q are some scalar functions satisfying $p + q = 1$.

Izumi ([3],[4]) introduced P^*-Finsler space in which P_{ijk} is of the form

$$P_{ijk} = \lambda C_{ijk} ,$$

where λ is a scalar homogeneous function of degree zero in y^i. In a P-reducible Finsler space the tensor P_{ijk} is of the form [9]
On A Special Form Of \((V) \) Hv-Torsion Tensor \(P_{ijk} \) In Finsler Spaces

\[P_{ijk} = \frac{1}{n+1} (G_i h_{jk} + G_j h_{ik} + G_k h_{ij}) , \]

where \(G_i = C_{ij}^l y^l \). A Finsler space with \(P_{ijk} = 0 \) is called a Landsberg space [13]. If \(C_{ijkh} = 0 \), then \(F^n \) is called a Bewald’s affinely connected space ([2], [11]).

B. N. Prasad [11] introduced a special form of torsion tensor \(P_{ijk} \) as follow

\[P_{ijk} = \lambda C_{ijk} + a_i h_{jk} + a_j h_{ik} + a_k h_{ij} , \]

where \(\lambda = \lambda(x, y) \) is a scalar homogenous function of degree 1 and \(a_i = a_i(x) \) is a homogenous function of degree 0 with respect to \(y^i \). He then studied some properties of \(F^n \) satisfying (5). The present author introduced a more general form of (5) and studied some properties of \(F^n \) satisfying it [14].

We quote the following lemmas, which will be used in the present paper.

Lemma 1: [6] If the hv-curvature tensor \(R_{ijk} \) of a C-reducible Finsler space vanishes then the space is Berwald’s affinely connected space.

Lemma 2: [5] A Finsler space \(F^n \) is locally Minkowskian iff \(h \)-curvature tensor \(R_{ijk} = 0 \), and \(|0| = h_{ijk} C \).

Preliminaries

Let \(M \) be an \(n \)-dimensional \(C^\infty \) manifold. By \(T_x M \) we mean the tangent space at \(x \in M \) and by \(TM \setminus \{0\} \) the slit tangent bundle of \(M \).

A Finsler metric on \(M \) is a function \(L : TM \rightarrow (0, \infty) \) which has the following properties:

\(i \) \(L \) is \(C^\infty \) on \(TM \setminus \{0\} \).

\(ii \) \(L \) is positively homogenous function of degree 1 on \(TM \).

\(iii \) For each \(y \in T_x M \), the metric tensor \(g_{ij} \), the angular metric tensor \(h_{ij} \) are respectively given by

\[g_{ij} = \frac{1}{2} \frac{\partial^2 L}{\partial y^i \partial y^j} \quad \text{and} \quad h_{ij} = L \frac{\partial^2 L}{\partial y^i \partial y^j} . \]

The angular metric tensor \(h_{ij} \) can also be written in terms of the normalized element of support

\[l_i = L g_{ij} y^j \quad \text{as} \quad h_{ij} = g_{ij} - l_i l_j \quad [7] . \]

For \(y \in T_x M \setminus \{0\} \), Cartan torsion tensor vector is defined as

\[C_i := g^{ik} C_{ijk} . \]

According to Deicke’s theorem, \(C_i = 0 \) is the necessary and sufficient condition for \(F^n \) to be Riemannian.

Let \(F^n = (M^n, L) \) be a Finsler space. For \(y \in T_x M \setminus \{0\} \), we define Matsumoto torsions of C-reducible and Semi C-reducible Finsler spaces respectively as:

\[M_{ijk} := C_{ijk} - \frac{1}{n+1} (C_i h_{jk} + C_j h_{ik} + C_k h_{ij}) \]

\[\bar{M}_{ijk} := C_{ijk} - \frac{p}{n+1} (h_j C_k + h_k C_j + h_i C_r) - \frac{q}{C^2} C_i C_j C_k \]

A Finsler space \(F^n \) is said to be C-reducible if \(M_{ijk} = 0 \), and is Semi C-reducible if \(\bar{M}_{ijk} = 0 \).
Next, we define the tensor

\[L_{ijk} := C_{ijk} y^j, \]

where the ‘|’ means h-covariant differentiation with respect to Cartan connection.

A Finsler space \(F^n \) is called a Landsberg space if \(P_{ijk} = 0 \), or equivalently \(L_{ijk} = C_{ijk} y^j = 0 \).

Define

\[L_i := g^{jk} L_{ijk}. \]

A Finsler space \(F^n \) is said to be weakly Landsberg space if \(L_i = 0 \) [12].

It is obvious that every C-reducible Finsler space is P-reducible, but the converse is not true.

We define

\[\tilde{M}_{ijk} := P_{ijk} - \frac{1}{n+1} (P_i h_{jk} + P_j h_{ik} + P_k h_{ij}), \]

where

\[P_{ijk} := \lambda C_{ijk} + \mu (a_i h_{jk} + a_j h_{ik} + a_k h_{ij}) + \nu C_i C_j C_k, \]

and

\[P_i := g^{jk} P_{ijk}, \]

where \(\lambda \), \(\mu \) and \(\nu \) are some scalar function homogenous of degree 1, and \(a_i \)'s are homogenous of degree zero. It is obvious that \(F^n \) is a P-reducible Finsler space if \(\tilde{M}_{ijk} = 0 \). The purpose of the present paper is to study \(F^n \) satisfying (10).

If \(F^n \) is a Landsberg space then \(P_{ijk} = 0 \), therefore from (10) we get

\[C_{ijk} = -\frac{\mu}{\lambda} (h_j a_k + h_k a_j + h_i a_j) - \frac{\nu}{\lambda} C_i C_j C_k, \]

and

\[a_i = -\frac{p \lambda}{\mu (n+1)} C_i, \quad -\frac{\lambda C^2}{\mu} = q. \]

Hence we have the following

Theorem 1. A Landsberg space satisfying (10) is a semi C-reducible Finsler space.

Since for \(F^n \) to be a Landsberge space \(P_{ijk} = 0 \), therefore from Lemma 1 and Theorem 1,

Theorem 2. A Landsberg space satisfying (10) is a Berwald’s affinely connected space if \(\nu = 0 \).

In view of Lemma 2 and Theorem 2 we have the following

Theorem 3. If a Landsberg space satisfying (10) has vanishing h-curvature tensor i.e. \(R_{ijkh} = 0 \), then it is locally Minkowskian.

Special form of \(P_{ijk} \)

Let \(F^n \) be a Finsler space satisfying (10). A Finsler space with \(P_{ijk} \) of the given form reduces to a \(P^* \)-Finsler space when \(\mu = 0 = \nu \), while it reduces to a P-reducible Finsler space when \(\lambda = 0 = \nu \) and \(\mu a_i = \frac{1}{n+1} C_i \).

By definition, from (10) we can write

\[L_{ijk} = \lambda C_{ijk} + \mu (a_i h_{jk} + a_j h_{ik} + a_k h_{ij}) + \nu C_i C_j C_k. \]
On A Special Form Of (V) Hv-Torsion Tensor \(P_{ijk} \) In Finsler Spaces

Contracting above by \(g^{ij} \), we get

\[L_k = (\lambda + \nu C^2)C_k + \mu(n+1)a_k, \]

or equivalently

\[a_k = \frac{1}{\mu(n+1)}L_k - \frac{\lambda + \nu C^2}{\mu(n+1)}C_k. \]

By replacing (13) into (12), we obtain

\[L_{ijk} = \lambda C_{ijk} + \frac{1}{n+1}(L_i h_{jk} + L_j h_{ik} + L_k h_{ij}) - \frac{\lambda + \nu C^2}{n+1}(C_i h_{jk} + C_j h_{ik} + C_k h_{ij}) + \nu C_i C_j C_k, \]

or

\[L_{ijk} = \frac{1}{n+1}(L_i h_{jk} + L_j h_{ik} + L_k h_{ij}) = \lambda[C_{ijk} - \frac{p}{(n+1)}(C_i h_{jk} + C_j h_{ik} + C_k h_{ij}) - \frac{q}{C^2} C_i C_j C_k], \]

where \(p = 1 + \frac{\nu}{\lambda} C^2 \), and \(q = -\frac{\nu}{\lambda} C^2 \).

Hence we have the following

Theorem 4. The Matsumoto torsion of \(P \)-reducible Finsler space \(\tilde{M}_{ijk} \), and Matsumoto torsion of Semi \(C \)-reducible Finsler space \(\bar{M}_{ijk} \), are related by

\[\tilde{M}_{ijk} = \lambda \bar{M}_{ijk}. \]

Theorem 5. A Finsler space \(F^n \) satisfying (10) is a weakly Landsberg space, if

\[a_i = -\frac{\mu(n+1)}{\lambda + \nu C^2}V_i. \]

The proof immediately follows from contraction of (12) with \(g^{jk} \).

The notion of stretch curvature denoted by \(\Sigma_{hijk} \) was introduced by L. Berwald as a generalization of Landsberg curvature [2], in which

\[\Sigma_{hijk} := 2(L_{hijk} - L_{hikj}). \]

A Finsler space \(F^n \) is said to be stretch space if \(\Sigma_{hijk} = 0 \).

Again taking h-covariant derivative of (12) and then contracting by \(y^h \), we get

\[L_{ijk} y^h = (\lambda + \lambda^2)C_{ijk} + (\lambda \mu a_i + \nu a_i + \mu a_j + \mu a_j)h_{ik} + (\lambda \mu a_j + \mu a_j + \mu a_j)h_{ik} + (\lambda \mu a_k + \nu a_k) h_{ij} + (\nu C_k + V C) C_i C_j + (L_i C_j + L_j C) v C_k, \]

where we have put \(\lambda = \lambda_{jk}, \mu = \mu_{jk} \), and \(V = v_{jk} \).

Suppose that \(F^n \) be a stretch space, then

\[L_{ijk} - L_{jik} = 0. \]

By contracting (14) with \(y^k \), we obtain

\[L_{ijk} y^h = 0. \]

Putting (16) into (14), we have

\[C_{ijk} = -\frac{1}{\lambda + \lambda^2}[(\lambda \mu a_i + \nu a_i + \mu a_j + \mu a_j)h_{ik} + (\lambda \mu a_j + \nu a_j + \mu a_j)h_{ik} + (\lambda \mu a_k + \nu a_k) h_{ij} + (\nu C_k + V C) C_i C_j + (L_i C_j + L_j C) v C_k], \]

[674]
Contraction of (17) by g^{jk} yields

$$C_k = -\frac{1}{\lambda + \lambda^2} \left[(n+1) (\lambda \mu a_k + \mu a_k + \mu a_k) + (\bar{\nu} C_k + \nu L_k) C^2 + 2\nu L C k \right].$$

Whence

$$\lambda \mu a_k + \mu a_k + \mu a_k = -\frac{\lambda + \lambda^2 + \nu C^2 + 2\nu L C}{n+1} C_k - \frac{\nu C^2}{n+1} L k.$$

Substituting (18) into (17), we get

$$C_{ijk} = \frac{\beta + \lambda^2 + \nu C^2 + 2\nu L C}{(n+1)(\lambda + \lambda^2)} (C_i h_{jk} + C_j h_{ik} + C_k h_{ij}) + \frac{\nu C^2}{(n+1)(\lambda + \lambda^2)} (L_i h_{jk} + L_j h_{ik} + L_k h_{ij})$$

$$+ \left(\frac{-\nu}{\lambda + \lambda^2} \right) C_i C_j C_k + \left(\frac{-\nu}{\lambda + \lambda^2} \right) (L_i C_j C_k + C_i L_j C_k + C_i C_j L_k).$$

Form (19), it follows that F^n is a Semi C-reducible Finsler space if it is a weakly Landsberg space.

Therefore we have the following

Theorem 6. Let a Finsler space F^n satisfying (10) be a stretch space, then it is a Semi C-reducible Finsler space, if it is a weakly Landsberg space.

REFERENCES

