ARAÇ ROTALAMA PROBLEMİNİN TASARRUF ALGORİTMASI İLE ÇÖZÜMÜ: SİVAS’TA BİR EKMEK FIRINI İÇİN UYGULAMA

Alptekin Ulutaş, Ali Oğuz Bayrakçıl, Mustafa Bilgehan Kutlu
428 199

Öz


Ticari mal taşımacılığı, ürünün toplam maliyetini etkileyen önemli bir maliyet unsurudur. Araç rotalama problemi 60 yıl önce ticari mal taşımacılığının maliyetini azaltmak hedefiyle ortaya çıktı. Literatürde bu sorunu çözmek için önerilen birçok yaklaşım ve model vardır. Bu çalışmada, Sivas'ta bir fırının araç rotalama problemini çözmek için tasarruf algoritması önerildi. Tasarruf algoritmasının kullanılma amacı, gerçek hayat problemleri için basit ve pratik olmasındandır. Bu çalışmada örnek olarak kullanılan fırın 15 Markete ekmek tedarik ediyor. Bu sorunu çözmek için öncelikle mesafeler matrisi elde edildi ve sonra bu matristen tasarruf miktarı değerleri hesaplandı. Sonuç olarak, tasarruf algoritması sayesinde günlük 10 Türk Lirası yakıt maliyeti tasarruf edilmiştir. Tasarruf algoritması işlemlerini hesaplarken, herhangi bir özel yazılım kullanılmamış; hesaplamalar MS Excel ile yapılmıştır.


Tam metin:

PDF

Referanslar


Ai, T. J., & Kachitvichyanukul, V. (2009). Particle swarm optimization and two solution representations for solving the capacitated vehicle routing problem. Computers & Industrial Engineering, 56(1), 380-387.

Altınel, İ. K., & Öncan, T. (2005). A new enhancement of the Clarke and Wright savings heuristic for the capacitated vehicle routing problem. Journal of the Operational Research Society, 56(8), 954-961.

Baldacci, R., Mingozzi, A., Roberti, R., & Calvo, R. W. (2013). An exact algorithm for the two-echelon capacitated vehicle routing problem. Operations Research, 61(2), 298-314.

Chen, A. L., Yang, G. K., & Wu, Z. M. (2006). Hybrid discrete particle swarm optimization algorithm for capacitated vehicle routing problem. Journal of Zhejiang University-Science A, 7(4), 607-614.

Christiansen, C. H., & Lysgaard, J. (2007). A branch-and-price algorithm for the capacitated vehicle routing problem with stochastic demands. Operations Research Letters, 35(6), 773-781.

Clarke, G., & Wright, J. W. (1964). Scheduling of vehicles from a central depot to a number of delivery points. Operations research, 12(4), 568-581.

Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management science, 6(1), 80-91.

Doyuran, T., & Çatay, B. (2011). A robust enhancement to the Clarke–Wright savings algorithm. Journal of the Operational Research Society, 62(1), 223-231.

Düzakın, E., & Demircioğlu, M. (2009). Araç Rotalama Problemleri ve Çözüm Yöntemleri. Iktisadi ve Idari Bilimler Fakültesi, Isletme Bölümü, Çukurova Universitesi, Adana, Turkey.

Escobar, J. W., Linfati, R., Toth, P., & Baldoquin, M. G. (2014). A hybrid granular tabu search algorithm for the multi-depot vehicle routing problem. Journal of Heuristics, 20(5), 483-509.

Fukasawa, R., Longo, H., Lysgaard, J., de Aragão, M. P., Reis, M., Uchoa, E., & Werneck, R. F. (2006).

Robust branch-and-cut-and-price for the capacitated vehicle routing problem. Mathematical programming, 106(3), 491-511.

Gendreau, M., Iori, M., Laporte, G., & Martello, S. (2008). A Tabu search heuristic for the vehicle routing problem with two‐dimensional loading constraints. Networks, 51(1), 4-18.

Gounaris, C. E., Wiesemann, W., & Floudas, C. A. (2013). The robust capacitated vehicle routing problem under demand uncertainty. Operations Research, 61(3), 677-693.

Goksal, F. P., Karaoglan, I., & Altiparmak, F. (2013). A hybrid discrete particle swarm optimization for vehicle routing problem with simultaneous pickup and delivery. Computers & Industrial Engineering, 65(1), 39-53.

Jin, J., Crainic, T. G., & Løkketangen, A. (2014). A cooperative parallel metaheuristic for the capacitated vehicle routing problem. Computers & Operations Research, 44, 33-41.

Juan, A. A., Faulin, J., Ruiz, R., Barrios, B., & Caballé, S. (2010). The SR-GCWS hybrid algorithm for solving the capacitated vehicle routing problem. Applied Soft Computing, 10(1), 215-224.

Junqueira, L., & Morabito, R. (2015). Heuristic algorithms for a three-dimensional loading capacitated vehicle routing problem in a carrier. Computers & Industrial Engineering, 88, 110-130.

Ke, L., & Feng, Z. (2013). A two-phase metaheuristic for the cumulative capacitated vehicle routing problem. Computers & Operations Research, 40(2), 633-638.

Kosif, B., & Ekmekçi, İ. (2012). Araç Rotalama Sistemleri Ve Tasarruf Algoritması Uygulaması.

Lee, C. Y., Lee, Z. J., Lin, S. W., & Ying, K. C. (2010). An enhanced ant colony optimization (EACO) applied to capacitated vehicle routing problem. Applied Intelligence, 32(1), 88-95.

Leung, S. C., Zhou, X., Zhang, D., & Zheng, J. (2011). Extended guided tabu search and a new packing algorithm for the two-dimensional loading vehicle routing problem. Computers & Operations Research, 38(1), 205-215.

Lin, S. W., Lee, Z. J., Ying, K. C., & Lee, C. Y. (2009). Applying hybrid meta-heuristics for capacitated vehicle routing problem. Expert Systems with Applications, 36(2), 1505-1512.

Lysgaard, J., Letchford, A. N., & Eglese, R. W. (2004). A new branch-and-cut algorithm for the capacitated vehicle routing problem. Mathematical Programming, 100(2), 423-445.

Lysgaard, J., & Wøhlk, S. (2014). A branch-and-cut-and-price algorithm for the cumulative capacitated vehicle routing problem. European Journal of Operational Research, 236(3), 800-810.

Nagata, Y. (2007, April). Edge assembly crossover for the capacitated vehicle routing problem. In European Conference on Evolutionary Computation in Combinatorial Optimization (pp. 142-153). Springer Berlin Heidelberg.

Nagata, Y., & Bräysy, O. (2009). Edge assembly-based memetic algorithm for the capacitated vehicle routing problem. Networks, 54(4), 205.

Nazif, H., & Lee, L. S. (2012). Optimised crossover genetic algorithm for capacitated vehicle routing problem. Applied Mathematical Modelling, 36(5), 2110-2117.

Ngueveu, S. U., Prins, C., & Calvo, R. W. (2010). An effective memetic algorithm for the cumulative capacitated vehicle routing problem. Computers & Operations Research, 37(11), 1877-1885.

Niu, Y., Wang, S., He, J., & Xiao, J. (2015). A novel membrane algorithm for capacitated vehicle routing problem. Soft Computing, 19(2), 471-482.

Perboli, G., Pezzella, F., & Tadei, R. (2008). EVE-OPT: a hybrid algorithm for the capacitated vehicle routing problem. Mathematical Methods of Operations Research, 68(2), 361-382.

Pichpibul, T., & Kawtummachai, R. (2012a). An improved Clarke and Wright savings algorithm for the capacitated vehicle routing problem. ScienceAsia, 38(3), 307-318.

Pichpibul, T., & Kawtummachai, R. (2012b). New enhancement for Clarke-Wright savings algorithm to optimize the capacitated vehicle routing problem. European Journal of Scientific Research, 78(1), 119-134.

Polat, O., Kalayci, C. B., Kulak, O., & Günther, H. O. (2015). A perturbation based variable neighborhood search heuristic for solving the vehicle routing problem with simultaneous pickup and delivery with time limit. European Journal of Operational Research, 242(2), 369-382.

Reed, M., Yiannakou, A., & Evering, R. (2014). An ant colony algorithm for the multi-compartment vehicle routing problem. Applied Soft Computing, 15, 169-176.

Reimann, M., Doerner, K., & Hartl, R. F. (2004). D-ants: Savings based ants divide and conquer the vehicle routing problem. Computers & Operations Research, 31(4), 563-591.

Szeto, W. Y., Wu, Y., & Ho, S. C. (2011). An artificial bee colony algorithm for the capacitated vehicle routing problem. European Journal of Operational Research, 215(1), 126-135.

Tavakkoli-Moghaddam, R., Safaei, N., & Gholipour, Y. (2006). A hybrid simulated annealing for capacitated vehicle routing problems with the independent route length. Applied Mathematics and Computation, 176(2), 445-454.

Tavakkoli-Moghaddam, R., Safaei, N., Kah, M. M. O., & Rabbani, M. (2007). A new capacitated vehicle routing problem with split service for minimizing fleet cost by simulated annealing. Journal of the Franklin Institute, 344(5), 406-425.

Teymourian, E., Kayvanfar, V., Komaki, G. M., & Zandieh, M. (2016). Enhanced intelligent water drops and cuckoo search algorithms for solving the capacitated vehicle routing problem. Information Sciences, 334, 354-378.

Toth, P., & Vigo, D. (2002). Models, relaxations and exact approaches for the capacitated vehicle routing problem. Discrete Applied Mathematics, 123(1), 487-512.

Wang, S., Lu, Z., Wei, L., Ji, G., & Yang, J. (2016). Fitness-scaling adaptive genetic algorithm with local search for solving the Multiple Depot Vehicle Routing Problem. Simulation, 92(7), 601-616.

Wei, L., Zhang, Z., Zhang, D., & Lim, A. (2015). A variable neighborhood search for the capacitated vehicle routing problem with two-dimensional loading constraints. European Journal of Operational Research, 243(3), 798-814.

Xiao, Y., Zhao, Q., Kaku, I., & Xu, Y. (2012). Development of a fuel consumption optimization model for the capacitated vehicle routing problem. Computers & Operations Research, 39(7), 1419-1431.

Yalcın, G. D., & Erginel, N. (2015). Fuzzy multi-objective programming algorithm for vehicle routing problems with backhauls. Expert Systems with Applications, 42(13), 5632-5644.

Yao, B., Yu, B., Hu, P., Gao, J., & Zhang, M. (2016). An improved particle swarm optimization for carton heterogeneous vehicle routing problem with a collection depot. Annals of Operations Research, 242(2), 303-320.

Yu, B., Yang, Z. Z., & Yao, B. (2009). An improved ant colony optimization for vehicle routing problem. European journal of operational research, 196(1), 171-176.

Zhou, Y., Luo, Q., Xie, J., & Zheng, H. (2016). A hybrid bat algorithm with path relinking for the capacitated vehicle routing problem. In Metaheuristics and Optimization in Civil Engineering (pp. 255-276). Springer International Publishing.




İrtibat
C.Ü. İktisadi ve İdari Bilimler Dergisi
İktisadi ve İdari Bilimler Fakültesi Dekanlığı
58140 Kampüs SİVAS
Tel: 0346 2191010-1710
Fax: 0346 2191202
E-Mail: iibfdergi@cumhuriyet.edu.tr

İndekslendiği Kaynaklar:
--------------------------------------------------------
    
--------------------------------------------------------